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It is argued that, according to the suggested interpretation of quantum mechanical 
probabilities, (1) the Bell inequalities are not equivalent with those inequalities 
derived by Pitowsky and others that indicate the Kolmogorovity of a probability 
model, (2) the original Bell inequalities are irrelevant to both the question of 
whether or not quantum mechanics is a Kolmogorovian theory as well as the 
problem of determinism, whereas (3) the Pitowsky-type inequalities are not 
violated by quantum mechanics, hence (4) quantum mechanics is a 
Kolmogorovian probability theory, therefore, (5) it is compatible with an entirely 
deterministic universe. 

1. I N T R O D U C T I O N  

Is our world deterministic or indeterministic? Isn ' t  everything already 
written in a big (4-dimensional) book? Is there a becoming of  future events, 
or is time merely subjective and being timeless? Is there any difference 
between the ontological and epistemological probabilities? What  about free 
will? How many universes do we want? Do we need branching histories to 
describe our world? All these intriguing questions of  philosophy of  science 
are related to the very basic features of  quantum mechanical  probabilities. 
The debates about determinism/indeterminism center around the problem of  
whether or not there exist ontological modalities. Ontological modali ty means 
that "at a given moment  in the history o f  the world there are a variety of  
ways in which affairs might carry on. Before the toss of  the coin there are 
two things that could happen, either Heads up or Tails up. This possibility 
is not merely epistemic, but in re" (Belnap and Green, n.d.). The other 
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possibility is that any stochasticity is merely epistemic, related to the lack 
of knowledge of the states of affairs. 

Many believe that physics can provide some hints for solving some of 
the related philosophical problems. As Reichenbach (1956) writes in connec- 
tion to a very close issue, "There is no other way to solve the problem of 
time than . . .  through physics . . . .  If time is objective the physicist must 
have discovered this fact, if there is Becoming the physicist must know it; 
but if time is merely subjective and Being is timeless, then the physicist must 
have been able to ignore time in his construction of reality." However, classical 
(statistical) physics leaves this philosophical problem unsolved, since the 
stochastic models of classical statistical physics are compatible with both the 
assumption of an underlying ontologically deterministic as well as indetermin- 
istic theory, though, according to the common belief quantum mechanics is 
not compatible with a deterministic universe. Determinism, as it is used here, 
does not (necessarily) mean a functional relationship between earlier and later 
events, in the sense of computability, as determinism is usually understood in 
science (GrUnbaum, 1963, pp. 314-329; Earman, 1986; Faye, 1989, Chapter 
3). In other words, we do not assume that earlier time slices of the universe 
are determinately related, by laws of nature, to later time slices. Instead, 
determinism is used in a very deep, ontological sense. In Prior's branching 
time or Belnap's branching space-time terminology, there is no branching 
point and there is only one history (Belnap, 1992). The assumption of ontologi- 
cal determinism does not contradict stochastic physical theories, which reflect 
the emergence of indeterminism at the epistemic level. However, I want 
to emphasize that there is a testable physical consequence of ontological 
determinism. Namely, the probabilities of future events in a deterministic 
world should be interpreted as weighted averages of the possible truth value 
assignments. But we also know that this is true only if the corresponding 
probabilities admit a Kolmogorovian representation (Pitowsky, 1989). 
According to widespread opinion, quantum mechanics is not compatible even 
with the assumption of ontological determinism. For instance, Bub (1994) 
writes: "we know that we can't interpret the probabilities defined by the 
quantum state epistemically as measures over the different possible truth 
value assignments to all the propositions." This statement is, of course, true 
within the framework of the traditional Hilbert space quantum theory. The 
question is whether or not we have empirical evidence proving the nonexist- 
ence of such epistemic interpretation. As is known, the violation of Bell-type 
inequalities in various experiments provides such empirical evidence. 

In this paper, I challenge this conclusion by showing that no rigorous 
proof exists that the probabilities defined by quantum mechanics should be 
non-Kolmogorovian. Consequently, nothing implies that quantum theory is 
incompatible with a deterministic universe. 
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2. PRELIMINARIES 

2.1. Bell 

An important historical step was Bell's analysis of the EPR experiment. 
The great advantage of Bell's approach to the problem of hidden variables 
was that even though he used part of the machinery of quantum mechanics, 
one does not need to use it, but only elementary probability calculus and the 
experimental results. That is why his proof of the nonexistence of (local) 
hidden variables has been regarded as the most serious. 

Consider an experiment corresponding to the Clauser and Horn deriva- 
tion of the inequalities. It is like Aspect's experiment with spin-1/2 particles 
(Fig. 1). Briefly recall the usual assumptions describing the intuitive notion 
of a local hidden variable. Assume that there is a parameter X taken as an 
element of a probability space (A, Z(A), p), such that the quantum mechanical 
probabilities can be represented as follows: 

p(X, a /x B),,,~, = p(h ,  a) , ,p(k ,  B)~, 

p(A). = ~ p(X, A). dp (1) 
L 

p(B)~, = f p(X, B),, dp 
L \ 

p(A  /x B),,.~, = f p(X, A),,p(X, B)h dp 
.), 

For real numbers such that 

O < - - x , x ' , y , y  ' < -  1 

the following elementary inequality holds: 

- 1  <-- xy  - xy '  + x ' y  + x ' y '  - x '  - y <-- O 

~tenl- 

C3edach 
~IlagneLs 

�9 : ....... switches 
detector A : . . . . . . . . . . . . .  ~. s / ,,aetector B & 

detector A' spin-0 detector B' 

F ig .  1. The  Aspec t  exper imen t  wi th  s p i n - l / 2  part icles.  
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Applying this inequality, we have 

- 1 <- p ( k .  A / x  B),,j, - p ( k .  A / x  B'),,j,. + p ( k .  A'  .'. B)~,,j, 

+ p(X, A '  /x B ' ) , ,v  ,, - p(k, A'),,, - p(k, B)t~ ----- 0 

Integrating this inequality, we have 

- 1 <- p ( A / x  B),,.,, - p ( A / x  B'),,j,, + p ( A '  .x B),,,~ + p ( A '  /x B'),,v,, 

- p (A ' ) . ,  - p(B), ,  <-- 0 (2 )  

This is one of the well-known Clauser-Horne inequalities (one can get all 
the others by varying the roles of A, A', B, B'). Returning to the Aspect 
experiment, consider the following events: 

A Left electron has spin "up" in direction a 
A' Left electron has spin "up" in direction a'  
B Right electron has spin "up" in direction b 
B' Right electron has spin "up" in direction b' 

As is well known, in the case /_(x, y) = /_(y, w) = / ( x ,  w) = 120 ~ and 
x = z, the quantum mechanical predictions as well as the experimental 
results are 

t m [ p(A), ,  = p ( A  ),,, = p(B),, = p(B' )h ,  
t p - -  3 p ( A  /x B),,j, = p ( A  /x B )a.l,, = p ( A '  /x B ),v,' 8 

p ( A '  ~, B) ,v ,  = 0 

(3) 

These probabilities violate the Clauser-Horne inequality. Thus, according to 
the usual conclusion, there is no local hidden variable theory reproducing 
the quantum mechanical probabilities. 

2 . 2 .  P i t o w s k y  

In the above derivation of Clauser-Horne inequalities, as in any other 
derivation of Bell-type inequalities, "the physical aspects of the problem are 
intermingled with the purely mathematical character of the derivation of the 
inequalities," says Pitowsky (1989, p. 49). He continues: "This is a course 
of prevailing confusion, as if Bell-type inequalities have, in themselves some- 
thing to do with physics. But they do not . . . .  these inequalities follow directly 
from the theory of probability or, if you like, from propositional logic. It is 
only their violation by quantum frequencies which makes them important 
for the foundations of physics." In the rest of this paper I challenge this 
conclusion at two different points. (1) I will show that Pitowsky's inequalities, 
derived from the Kolmogorovian probability theory, are not the same as the 
Bell inequalities. (2) Pitowsky's inequalities are not violated by quantum 



Q M  in an Entirely Deterministic Universe 1755 

mechanics. But, first, recall Pitowsky's  important theorem about the condi- 
tions under which a probability theory is Kolmogorovian.  

Let  S be a set of  pairs of  integers S C_ { {i, j } I 1 -< i --< j --< n }. Denote 
by R(n, S) the linear space of  real vectors having a form like (flf2 "'" f ,  " '" 
f~  . . . ) .  For each e c {0, l }", let u ~ be the following vector in R(n, S): 

u~ = % 1 -- i --< n 

ui~j = ~i~j, { i , j }  ~ S (4) 

The classical correlation polytope C(n, S) (see Fig. 2) is the closed convex 
hull in R(n, S) of  vectors {u~}zE/0:l,: 

C(n, S ) " =  {a  E R(n, S)Ia = 
ZE{0,1} n 

k.u z such that kz --> 0 and ~] X z = 1 

(5) 

Let p = (Pl . . . .  P . . . . .  Pij . . . .  ) ~ R(n, S). We will then say that p has a 
Kolmogorovian representation if there exist a Kolmogorovian probability 
space (D~ ~, ix) and events Ai, A2 . . . .  A,, E E such that 

Pi = i x ( A i ) ,  1 <<- i <-- n 

Pi/ = ix(Ai N Ai), { i , j }  ~ S 

Theorem 1 (Pitowsky, 1989). A correlation vector p = (PlP2 "'" P , : ' "  
Pij "" ") has a Kolmogorovian representation if and only if p ~ C(s, S). 

From the definition of  the polytope, equations (4) and (5), it is obvious 
that the condition p ~ C(n, S) has the following meaning: the probabilities 
can be represented as weighted averages of  the classical truth values. 

In the case n = 4 and S = $4 = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, the 
condition p ~ C(n, S) is equivalent to the following inequalities: 

0 <- p(Ai A Aj) <- p(Ai) <-- 1 

O < - p ( A i A A j ) < - p ( A j ) < -  1, i =  1 ,2  j = 3 , 4  

p(Ai) + p(ag) - p(ai  A a j )  <-- 1 

Fig. 2. Class ica l  corre la t ion  po ly tope  

for n = 2. (ooo) (lOO) 

(1:1) 
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- 1  <-- p ( A j  /~ A3) + p(AI  /x A4) %- p ( A  2 A A4) - p(A  2 A A3) 

- p ( A j )  - p(A4) --< 0 

- 1 <--- p ( A 2 / x  A3) + p(A2 /x  A4) + p(A l  /x A4) 

- p(AI  /x A3) - p(A2) - p(A4) ~ 0 (6) 

- 1 ~ p ( A  1 A A4) % p(AI  A A3) %" p(A  2 A A3) - p ( A 2 / x  A4) 

- p ( A ~ )  - p ( a 3 )  <-- 0 

- 1 <-- p(A2 A A4) %" p(A2 m A3) %" p(AI  /x A3) 

- p ( A  1 A A4) - p(A2) - p(A3) --< 0 

The last inequality of (6) really reminds one of the inequality (2) if A l = A, 
A2 = A', A 3 = B, and A4 = B'. This explains why Pitowsky calls inequalities 
(6) "the Clauser-Horne inequalities" and the corresponding correlation poly- 
tope C(4, S) "the Clauser-Horne polytope." Therefore, substituting for the 
probabilities in the last inequality of (6) the same values as were calculated 
from quantum mechanics in (3), we have 

3 + 3 + 3 _ 0  1 1 _  1 > 0  (7) 
8 8 8 2 2 8 

Consequently, 

P = 2 2 2 8 8  

Now, Pitowsky concludes: "We have demonstrated that p e~ C(n, S) and 
therefore we cannot explain the statistical outcome by assuming that the 
source is an "urn," containing electron pairs in the singlet state, such that 
the distribution of the properties A, A', B, B' in this "urn" is fixed before 
the measurement" (Pitowsky, 1989, p. 82; notation changed for sake of 
uniformity). "The violations of these constraints on correlations by quantum 
frequencies thus poses a major problem for all schools of classical probability. 
I take this fact to be the major source of difficulty which underlies the 
interpretation of quantum theory" (Pitowsky, 1989, p. 87). 

3. THE NONEQUALITY OF THE BELL INEQUALITIES 

At this essential point I challenge the above conclusion of Pitowsky: in 
formula (7) we substituted incorrec t  values  for the probabilities of inequality 
(6). In order to see why, we have to investigate the exact meaning of the 
probabilities in quantum mechanics and in Pitowsky's inequalities. 
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Whenever we talk about probabilities we have to specify the system o f  
conditions under which the probabilit ies are understood. Sometimes these 
conditions are given only tacitly, but without such conditions the probabilities 
are meaningless. The meaning of the quantum mechanical probability, tr(WA), 
is this: "the probability of getting outcome A given that the measurement a 
is performed." Let p(A)u denote such a conditional probability. Throughout the 
derivation of the original Clauser-Horne inequalities (2) we used conditional 
probabilities. Making the tacit conditions explicit, (Fig. 3.), we have 

- 1 <- p(A ix B)a,b - p(A ^ B')a,b, + p ( A ' / ~  B)a,,b 

+ p ( a '  A B')a,,b, -- p(a ' )a,  - p(B)b <-- 0 (9) 

It is remarkable that in the original Clauser-Horne inequality (9) we have 
probabilities corresponding to different conditions. 

At the same time the probabilities in the Pitowsky theorem belong to 
one common set o f  conditions, as a consequence of the fact that the probability 
measure on any Kolmogorovian probability space also belongs to one com- 
mon set of conditions. These common conditions can be formulated in various 
ways. In the case of the EPR experiment they can be the prepared physical 
circumstances at the moment of decay of the source particle. For brevity this 
primary common set of conditions is not indicated in our future notations. 
Since A entails a, one can, of course, calculate the "unconditioned" probabili- 
ties in the usual way: 

p(A ) = tr(WA ) . p(a - measurement) (10) 

Actually these are the probabilities that one can measure in a laboratory by 
counting the "beeps" given by a detector responsible for outcome A. Assume 

-1  < p( A / x B )  - p ( a ^ B .  "i~ ~ p( a '  ^ B)o~ + p ( a '  ^ B ' )  .... . , i J  (2) 
.-O('A ) < 0 

Fig. 3. The smaller than usual subscripts through Section 2.1. symbolize that those 
conditions are always there, but neglected by people. 
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that the switches (Fig. 1) choose between the corresponding two measure- 
ments with equal probability: p(a) = p(a') = p(b) = p(b') = 1/2. So, the 
correct numbers in (7) should be 

3 + 3 + 3  0 1 1 7 
. . . . .  ~ [ -1 ,  O] (11) 
32 32 32 4 4 32 

Consequently, 

(~1  1 1 3 3 0 3 )  ~ C(4,$4 ) (12) 
P = 4 4 4 32 32 

This means that the measured probabilities in the EPR experiment are 
Kolmogorovian! 

Thus, the original Bell (Clauser-Horne) inequalities, such as (9), which 
contain conditional probabilities that belong to different conditions, are not the 
same inequalities as Pitowsky's "Bell (Clauser-Horne)" inequalities like (6). 

4. IS QUANTUM MECHANICS COMPATIBLE W I T H  A 
DETERMINISTIC UNIVERSE? 

The fact that Pitowsky's inequalities are not violated leads to the conclu- 
sion that the EPR experiments do not provide empirical evidence against the 
Kolmogorovian character of  quantum probabilities. This conclusion is 
entirely contrary to that of Pitowsky himself) One can ask now several 
questions: (1) What is the conceptual origin of Pitowsky's argumentation? 
(2) What is the deeper meaning of the fact that the EPR experiments do not 
violate Pitowsky's version of "Clauser-Horne" inequalities, while they do 
violate the original Clauser-Horne inequalities? (3) If, as I suggest, quantum 
mechanics is a Kolmogorovian probability theory, what kind of consequences 
follow from this fact with respect to the hidden variable theories and the 
possibility of a deterministic explanation of quantum phenomenon? 

4.1. Presumptions Versus Reality 

In order to see the conceptual mistake in substituting the value of 
conditional probability p(A). for the "unconditioned" probability p(A), con- 
sider two distinct understandings of quantum mechanical probabilities: 

(a) p(A). = tr(WA) is the probability of the occurrence of the outcome 
A given that the measurement a is performed. 

3It also contradicts some parts of my two earlier papers (Szab6, 1993, 1994) in which ! 
uncritically recalled the conclusions of Pitowsky. 
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(b) P(fi0 = tr(WA) is the probability that the system has the property 
A, which property consists in that "the outcome A occurs whenever 
measurement a is performed." 

If we accept version (a), then the substitution p(A),, for p(A) is a simple 
mistake of calculation. To assume (b) leads to the following contradiction. 
In the case of the EPR experiment: 

(i) According to interpretation (b), one assumes that: "the source is an 
'urn,' containing electron pairs in singleton state such that the distribution 
of the properties A, A', B, B' in this 'urn' is fixed before the measurement." 

(ii) In this case one can correctly substitute p(A),, for p(A), and have 

p r  C(n, S) 

(iii) From which it follows that: "we cannot explain the statistical out- 
come by assuming that the source is an 'urn,' containing electron pairs in 
singleton state such that the distribution of the properties A, A', B, B' in this 
'urn' is fixed before the measurement." 

From the contradiction between the quoted statements in (i) and (iii) it 
does not at all follow that quantum mechanics is a non-Kolmogorovian 
probability theory. But it does follow that (b) is an untenable interpretation 
of the quantum mechanical probabilities. 

4.2. Violat ion of  the Original Inequalit ies  

One can ask, then, what does the violation of the original Bell-type 
inequalities mean, if does not mean that quantum mechanics is a non-Kolmo- 
gorovian theory? Compare the two kinds of Bell inequalities. Taking into 
account (10), the original Clauser-Horne inequalities can be expressed in 
the following way: 

- 1  <_p(A A B) p(A A B') + p(A' A B) + p(A' A B') 
p(a ^ b) p(a A b') p(a' A b) p(a' A b') 

p(a')  p(B) <_ 0 
p(a') p(b) 

(13) 

The corresponding Pitowsky inequality is the last inequality of (6): 

- 1  <_ p(A A B) - p(A A B') + p(A' A B) + p(A' A B') 

-- p (A ' )  - p (B)  <-- 0 (14) 

However, inequalities (13) and (14) are entirely different. And there is no 
easy way to specify when the violation of one of them involves the violation 
of the other. Fortunately we do not need to deal with this problem since we 
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can entirely neglect the original Bell inequalities. We can do that for two 
different reasons. First, as we have seen, they are completely irrelevant to 
the question of whether or not quantum mechanics is a Kolmogorovian theory. 
Second, they are irrelevant from the point of view of a common cause 
explanation of quantum correlations. Indeed, according to the understanding 
of  quantum mechanical probabilities mentioned as version (a) in Section 4.1, 
the question of  whether or not there exists such a hidden parameter that 
satisfies conditions 

p(h, A/x B),,,b = p(h, A )~p(~, B)b 

p(A),, = fa p(h, A)a do 

p(B)h = fA p(X, B)b dp 

p(A A B),,,b = fA p(X, A),,p(k, B)t, dp (15) 

is meaningless. As a matter of fact, these conditions would express the 
intuitive conception of a common cause mechanism responsible for the EPR 
correlations only if the probabilities in (15) were interpreted as the probabili- 
ties of appearances of "properties" of the system. This interpretation is nothing 
else but the version (b) in Section 4.1. Only in this case could we infer from 
the violation of the original Clauser-Horne inequality to the violation of 
Einstein locality. But we have rejected version (b) as a contradictory interpre- 
tation. In other words, since there are no "properties" corresponding to out- 
comes of measurements we can perform on the system (at least quantum 
mechanics has nothing to do with such properties), we do not need to explain 
"the correlation between spatially separated occurrence of such [nonexisting] 
properties." But, there do exist (observable physical) events corresponding 
to performance-preparations of various measurements and other events which 
correspond to the outcomes. Each such event occurs with certain probability. 
What we observe in the EPR experiment is a correlation between spatially 
separated outcomes. And the question is whether or not a local hidden variable 
explanation is possible for such a correlation. Thus, the whole formulation 
of the common cause problem has to be reconsidered. 

4.3. Correct  Formulat ion  of  the Local  Hidden Variable Problem 

A local hidden variable theory (considered as a mathematically well 
formulated representation of a deterministic and nonviolating-Einstein- 
causality universe) has to reproduce the probabilities of the outcomes and 
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that of the performance-preparation. The assumed "parameter" k E A should 
represent the state of the part of the universe which belongs to the common 
past of the two separated measurements (Fig. 4) such that for both the 
outcomes and the performance-preparations we have 

p(a) = IA p(k, A) dp (16/1) 

p(a') = fA p(k, A') dp (16/2) 

p(B) -- [ p(k, B) d0 (16/3) 
Jr 

p(B') =- fA p(~' B') dp (16/4) 

p(a) = fA p(k, a) d 9 (16/5) 

p(a') = [ p(k, a') dp (16/6) 
L 

p(b) = [ p(k, b) dp (16/7) 
L 

p(b') = fA p(k, b') d 9 (16/8) 

Fig. 4. The parameter k E A represents the state of  the universe in the common past of  
regions I and II. 
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The same holds for the conjunctions 

p(A/x B) = fA p(k, A/x B) dp 

p(A ^ B') = f~ p(k, A/~ B') do 

p(a' A B') = fA p(k, a' /x B') dp 

(16/9) 

(16/10) 

this assumption via the following relations: 

p(k, A/x B) = p(k, A).p(k, B) (17/1) 

p(k, A A B') = p(k, A)-p(k, B') (17/2) 

p(k, A' ,x B) = p(k, A') .p(k,  B) (17/3) 

p(k, A' A B') = p(k, A') .p(k,  B') (17/4) 

p(k, a A b) = p(k, a) .p(k,  b) (17/5) 

p(k, a/x b') = p(k, a) .p(k,  b') (17/6) 

p(k, a ' /x  b) = p(k, a ' ) .p(k ,  b) (17/7) 

p(k, a'  A b') = p(k, a ' ) .p(k ,  b') (17/8) 

p(k, A/x b) = p(k, A).p(k,  b) (17/9) 

p(k, A A b') = p(k, A) 'p0t ,  b') (17/10) 

p(k, A' A b) = p(k, A ' ) 'p(k ,  b) (17/t 1) 

p(k, A' /x b') = p(k, A')"p(k, b') (17/t2) 

p(k, a/x B) = p(k, a) .p(k,  B) (17/13) 

p(k, a / ,  B') = p(k, a)-p(k,  B') (17/14) 

p(k, a ' /x  B) = p(k, a ' ) -p(k,  B) (17/15) 

p(X, a' A B') = p(k, a').p(X, B') (17/16) 

We also assume that the underlying hidden variable theory is Einstein-local. 
This means that the correlation between any two spatially separated events 
should be the consequence of the k dependence of the corresponding probabil- 
ities and not the consequence of a direct physical interaction. We can formulate 
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Relations (17/1)-(17/4) express the k-level independence of the outcomes 
(in other words, the screening off the outcomes by the hidden parameter), 
relations (17/5-17/8) express the h-level independence of the choices of 
which measurement will be performed. Finally, equations (17/9)-(17/16) 
represent the h-level independence of the outcomes from the spatially sepa- 
rated choices (required parameter independence). 

Now, the question is whether there exists such a parameter satisfying 
conditions (16/1-16/24) and (17/1)-(17/16). One can apply the following4: 

Theorem 2. With the notation of the Section 2.2, consider events AI, 
. . . .  A, and a set of indexes S. Assume that a correlation vector p = (p(A~) 
�9 ..  p (A, )  . . .  p(Ai A Ai)  "" ") can be represented as a convex combination of 
parameter-dependent correlation vectors (.rr(h, Al) "'" "rr(k, A,) . . -  n'r(X, Ai 
,~ a j )  . . . ) ,  

p(Ai) = fA "rr(k, Ai) dp(X) for 1 -< i -< n (18) 

= I~'rr(X, A i A A i )  dp(X) for { i , j }  E S p(Ai A Aj)  

such that 

w(X, A i ^ A j )  = ~r(h, A i ) 'w (h ,  Aj)  foreach { i , j }  ~ S (19) 

Then p E C(n, S). 

See Szab6 (1995) for the proof. 

Equations ( 16/1)- (16/24) correspond to (18) and ( 17/1)- (17/16) to (19) 
in the case 

S = 816 

Ai = A As = a 

A2 = A '  A6 = a' 

A3 = B A7 = b 

A4 = B' As = b' 

= {{1 ,3} ,  (1 ,4} ,  {2,3},  {2,4},  {5,7},  {5,8},  {6,7},  

{6,8}, {1,7}, {1,8}, {2,7}, {2,8}, {5,3}, {5,4}, {6,3}, {6,4}} 

4We cannot use the formal reproduction of the Clauser-Horne derivation described in Section 
2.1 because the number of events and the number of investigated conjunctions are larger 
than four. 
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According to this theorem, if there exists a hidden parameter theory satisfying 
conditions (16/1 )-(16/24) and ( 17/1)- (17/16), then the o b s e r v e d  probabilities 
should satisfy condition p e C(8, SI6). 

Let us gather all the information we know about the observed probabili- 
ties in the Aspect-type spin-correlation experiment. According to the Section 
3, we have 

1 
p(A)  = p ( a ' )  = p (B)  = p ( B ' )  4 (20/1) 

1 
p(a)  = p ( a ' )  = p(b)  = p ( b ' )  = ~ (20/2) 

p(A  A B) = p (A  A B ' )  = p ( A '  A B ' )  - 
3 

(20/3) 
32 

Therefore 

1 
p(a  A b) = p (a  A b ' )  = p (a '  A b) = p (a '  A b ' )  4 (20/5) 

Similarly, it is an observed fact that the outcomes on the one side are indepen- 
dent of the choices on the other side (observed parameter independence). 
This means that 

p(A  ^ b) = p ( A ) . p ( b )  

p ( A  A b ' )  = p ( A ) . p ( b ' )  

p ( A '  / ,  b) = p ( , 4 ' ) . p ( b )  

p ( a '  A b ' )  = p ( a ' ) . p ( b ' )  

According to these independence relations, 

p ( A  A b) = p (A  ^ b ' )  = p ( A '  A b) = p ( A '  t ,  b ' )  

1 
= p(a  ~, B) = p (a  z, B ' )  = p (a '  A B)  = p (a '  A B ' )  = -~ 

p (a  A B)  = p ( a ) . p ( B )  

p (a  A B ' )  = p ( a ) . p ( B ' )  

p (a '  A B)  = p ( a ' ) . p ( B )  

p (a '  A B ' )  = p ( a ' ) . p ( B ' )  

(20/6) 

p(A '  ^ B) = 0 (20/4) 

The probabilities with which the different measurements are chosen satisfy 
the following independence conditions: 

p(a  ^ b) = p ( a ) ' p ( b )  

p ( a  A b ' )  = p ( a ) ' p ( b ' )  

p (a '  ^ b) = p ( a ' ) . p ( b )  

p (a '  A b ' )  = p ( a ' ) ' p ( b ' )  
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We can collect the data from (20/1)-(20/6) in a correlation vector. The 
question is whether or not this correlation vector is contained in the classical 
correlation polytope: 

? 
i 1 I I I I 1 3  3 3 t I I I I t I I I f I I C ( 8 , $ 1 6 )  ( 2 1 )  

In the case n > 4 there are no derived inequalities which would be equivalent 
to the condition p ~ C(n, S) [see Pitowsky (1989) for the details]. We thus 
have to examine the geometric condition (21) directly. I tested condition (21) 
by computer and the result is affirmative: 

= ~ l l t  i C(8, S~6) P (~-a Z~ {�89 : :32 32 

Consequently, Nere is no proved disagreement between the assumptions 
(16/1)-(16/24) and (17/1)-(17/16) about a local hidden variable theory and 
the observations. In other words, the existence of a local hidden variable 
theory is not excluded. 

5. CONCLUSIONS 

From my historical review it turned out that the Bell analysis of the 
EPR experiment was considered to be a clear and indeed the best illustration 
of the alleged fact that there is no (at least local) hidden variable theory 
which can reproduce the quantum mechanical probabilities. We recalled 
Pitowsky's theorem about the conditions under which a probability theory 
is Kolmogorovian. It is widely believed that Pitowsky's conditions are, as 
he claimed himself, equivalent with the Bell inequalities. Since quantum 
probabilities violate these inequalities, it is believed that quantum mechanics 
is not only incompatible with a local hidden parameter theory, but also 
incompatible with a Kolmogorovian probability-theoretic description. As a 
consequence of the non-Kolmogorovity, it is also maintained that quantum 
theory is incompatible with an ontologically deterministic world, i.e., the 
probabilities defined by the quantum states cannot be interpreted epistemically 
as weighted averages of the different possible truth value assignments to all 
the propositions. However, we have shown the following: 

1. The Bell inequalities are not equivalent with the inequalities derived 
by Pitowsky. 

2. The original Bell inequalities are irrelevant. 
3. The Pitowsky-type inequalities are not violated by quantum 

mechanics. 
4. Quantum mechanics is a Kolmogorovian probability theory. 
5. A more correct formulation of the hidden variable problem can 

be given. 
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6. There is no rigorous indication that quantum mechanics is not com- 
patible with an entirely deterministic universe. 
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